The Kamov Ka-50 "Black Shark" is a single-seat Russian attack helicopter with the distinctive coaxial rotor system of the Kamov design bureau. It was designed in the 1980s and adopted for service in the Russian army in 1995. It is manufactured by the Progress company in Arsenyev. It is being used as a heavily armed scout helicopter. During the late 1990s, Kamov and Israel Aerospace Industries developed a tandem-seat cockpit version, the Kamov Ka-50-2 "Erdogan", to compete in Turkey's attack helicopter competition. Kamov also designed another two-seat variant, the Kamov Ka-52 "Alligator".
The Ka-50 and its two-seat version Ka-52, are high-performance combat helicopters with day and night capability, high survivability and fire power, to defeat air targets and heavily armoured tanks armed with air defence weapons. It was designed to be small, fast and agile to improve survivability and lethality.
The coaxial rotor design provides a hovering ceiling of 4,000 m and vertical rate of climb of 10 m a second at an altitude of 2,500 m. The rotor blades are made from polymer materials. The coaxial-rotor configuration results in moments of inertia values relative to vertical and lateral axes between 1.5 and two times less than the values found in single-rotor helicopters with tail rotors. Absence of the tail rotor enables the helicopter to perform flat turns within the entire flight speed range. A maximum vertical load factor of 3.5 g combined with low moments of inertia give the Ka-50 a high level of agility. Flight systems include inertial navigation system (INS), autopilot and head-up display (HUD). Sensors include forward-looking infrared (FLIR) and terrain-following radar.
The Kamov Ka-50 is also fitted with an electronic radio and sighting-piloting-navigating system allowing flights at day and night in VFR and IFR weather conditions. The novelty of this avionics is based on the system of precise target designation with digital coded communication system, which ensures the exchange of information (precise enemy coordinates) between helicopters flying far apart from each other and ground command posts as well. Ka-52 is also equipped with a "Phazotron" cockpit radio-locator allowing flights in adverse meteorological conditions and at night. The necessary information acquired by this radio-locator is transferred to the cockpit's multi-functional display screen. For conducting a fight, both pilots are equipped with range-finders built-in their helmets and they can use night vision eyepieces for night flights.
For its own protection, Ka-50 is fitted with a radar warning receiver, electronic warfare system and chaff and flare dispenser. The dispensers are placed in aerodynamic containers fitted at wings’ ends. Each casing (container) contains two dispensers with 32 x 26 mm countermeasures each. The whole system works on principle of evaluated response based on infrared or electronic impulse irradiation. Extensive all-round armour installed in the cockpit protects the pilot against 12.7 mm armour-piercing bullets and 23 mm projectile fragments. The rotor blades are rated to withstand several hits of ground-based automatic weapons.
Other survivability features include twin-engine design for redundancy, protection for vital aircraft systems, and crash absorbing land gear and fuselage. Also, the coaxial main rotor configuration does not require tail rotor, which can improve survivability. It is the world's first operational helicopter with a rescue ejection system, which allows the pilot to escape at all altitudes and speeds. The K-37-800 rocket-assisted ejection system is manufactured by the Zvezda Research and Production Enterprise Joint Stock Company in the Moscow region. More details
The coaxial rotor design provides a hovering ceiling of 4,000 m and vertical rate of climb of 10 m a second at an altitude of 2,500 m. The rotor blades are made from polymer materials. The coaxial-rotor configuration results in moments of inertia values relative to vertical and lateral axes between 1.5 and two times less than the values found in single-rotor helicopters with tail rotors. Absence of the tail rotor enables the helicopter to perform flat turns within the entire flight speed range. A maximum vertical load factor of 3.5 g combined with low moments of inertia give the Ka-50 a high level of agility. Flight systems include inertial navigation system (INS), autopilot and head-up display (HUD). Sensors include forward-looking infrared (FLIR) and terrain-following radar.
The Kamov Ka-50 is also fitted with an electronic radio and sighting-piloting-navigating system allowing flights at day and night in VFR and IFR weather conditions. The novelty of this avionics is based on the system of precise target designation with digital coded communication system, which ensures the exchange of information (precise enemy coordinates) between helicopters flying far apart from each other and ground command posts as well. Ka-52 is also equipped with a "Phazotron" cockpit radio-locator allowing flights in adverse meteorological conditions and at night. The necessary information acquired by this radio-locator is transferred to the cockpit's multi-functional display screen. For conducting a fight, both pilots are equipped with range-finders built-in their helmets and they can use night vision eyepieces for night flights.
For its own protection, Ka-50 is fitted with a radar warning receiver, electronic warfare system and chaff and flare dispenser. The dispensers are placed in aerodynamic containers fitted at wings’ ends. Each casing (container) contains two dispensers with 32 x 26 mm countermeasures each. The whole system works on principle of evaluated response based on infrared or electronic impulse irradiation. Extensive all-round armour installed in the cockpit protects the pilot against 12.7 mm armour-piercing bullets and 23 mm projectile fragments. The rotor blades are rated to withstand several hits of ground-based automatic weapons.